Binary Tree Inorder Traversal
Question
- leetcode: Binary Tree Inorder Traversal | LeetCode OJ
- lintcode: (67) Binary Tree Inorder Traversal
Problem Statement
Given a binary tree, return the inorder traversal of its nodes' values.
Example
Given binary tree {1,#,2,3}
,
1
\
2
/
3
return [1,3,2]
.
Challenge
Can you do it without recursion?
题解1 - 递归版
中序遍历的访问顺序为『先左再根后右』,递归版最好理解,递归调用时注意返回值和递归左右子树的顺序即可。
Python
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
this.val = val
this.left, this.right = None, None
"""
class Solution:
"""
@param root: The root of binary tree.
@return: Inorder in ArrayList which contains node values.
"""
def inorderTraversal(self, root):
if root is None:
return []
else:
return [root.val] + self.inorderTraversal(root.left) \
+ self.inorderTraversal(root.right)
Python - with helper
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def inorderTraversal(self, root):
result = []
self.helper(root, result)
return result
def helper(self, root, ret):
if root is not None:
self.helper(root.left, ret)
ret.append(root.val)
self.helper(root.right, ret)
源码分析
Python 这种动态语言在写递归时返回结果好处理点,无需声明类型。通用的方法为在递归函数入口参数中传入返回结果, 也可使用分治的方法替代辅助函数。
复杂度分析
树中每个节点都需要被访问常数次,时间复杂度近似为 $$O(n)$$. 未使用额外辅助空间。
题解2 - 迭代版
使用辅助栈改写递归程序,中序遍历没有前序遍历好写,其中之一就在于入栈出栈的顺序和限制规则。我们采用「左根右」的访问顺序可知主要由如下四步构成。
- 首先需要一直对左子树迭代并将非空节点入栈
- 节点指针为空后不再入栈
- 当前节点为空时进行出栈操作,并访问栈顶节点
- 将当前指针p用其右子节点替代
步骤2,3,4对应「左根右」的遍历结构,只是此时的步骤2取的左值为空。
Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def inorderTraversal(self, root):
result = []
s = []
while root is not None or s:
if root is not None:
s.append(root)
root = root.left
else:
root = s.pop()
result.append(root.val)
root = root.right
return result
# Definition for a binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param root, a tree node
# @return a list of integers
def iterative_inorder(self, root, list):
stack = []
while root or stack:
if root:
stack.append(root)
root = root.left
else:
root = stack.pop()
list.append(root.val)
root = root.right
return list
def recursive_inorder(self, root, list):
if root:
self.inorder(root.left, list)
list.append(root.val)
self.inorder(root.right, list)
def inorderTraversal(self, root):
list = []
self.iterative_inorder(root, list)
return list
源码分析
使用栈的思想模拟递归,注意迭代的演进和边界条件即可。
复杂度分析
最坏情况下栈保存所有节点,空间复杂度 $$O(n)$$, 时间复杂度 $$O(n)$$.