Climbing Stairs

Question

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps.
In how many distinct ways can you climb to the top?

Example
Given an example n=3 , 1+1+1=2+1=1+2=3

return 3

题解

题目问的是到达顶端的方法数,我们采用序列类问题的通用分析方法,可以得到如下四要素:

  1. State: f[i] 爬到第i级的方法数
  2. Function: f[i]=f[i-1]+f[i-2]
  3. Initialization: f[0]=1,f[1]=1
  4. Answer: f[n]

尤其注意状态转移方程的写法,f[i]只可能由两个中间状态转化而来,一个是f[i-1],由f[i-1]到f[i]其方法总数并未增加;另一个是f[i-2],由f[i-2]到f[i]隔了两个台阶,因此有1+1和2两个方法,因此容易写成 f[i]=f[i-1]+f[i-2]+1,但仔细分析后能发现,由f[i-2]到f[i]的中间状态f[i-1]已经被利用过一次,故f[i]=f[i-1]+f[i-2]. 使用动规思想解题时需要分清『重叠子状态』, 如果有重复的需要去重。

class Solution:
    # @param n, an integer
    # @return an integer
    def climbStairs(self, n):
        dp = [1 for i in range(n+1)]
        for i in range(2, n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]

sol=Solution()
sol.climbStairs(3)

results matching ""

    No results matching ""