Unique Paths
- tags: [DP_Matrix]
Question
- leetcode62
- lintcode: (114) Unique Paths
A robot is located at the top-left corner of a m x n grid
(marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time.
The robot is trying to reach the bottom-right corner of the grid
(marked 'Finish' in the diagram below).
How many possible unique paths are there?
Note
m and n will be at most 100.
题解
题目要求:给定m x n矩阵,求左上角到右下角的路径总数,每次只能向左或者向右前进。按照动态规划中矩阵类问题的通用方法:
- State: f[m][n] 从起点到坐标(m,n)的路径数目
- Function: f[m][n] = f[m-1][n] + f[m][n-1] 分析终点与左边及右边节点的路径数,发现从左边或者右边到达终点的路径一定不会重合,相加即为唯一的路径总数
- Initialization: f[i][j] = 1, 到矩阵中任一节点均至少有一条路径,其实关键之处在于给第0行和第0列初始化,免去了单独遍历第0行和第0列进行初始化
- Answer: f[m - 1][n - 1]
class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m == 1 and n == 1:
list = [[1]]
elif m == 1 and n > 1:
list = [[1 for i in range(n)]]
elif m > 1 and n == 1:
list = [[1] for i in range(m)]
else:
list = [[0 for i in range(n)] for i in range(m)]
for i in range(0, n):
list[0][i] = 1
for i in range(0, m):
list[i][0] = 1
for i in range(1, m):
for j in range(1, n):
list[i][j] = list[i-1][j] + list[i][j-1]
return list[m-1][n-1]
sol = Solution()
sol.uniquePaths(3,3)
import math
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
ans = 1;tmp = 1;m -= 1;n -= 1
t = min(m,n)
i = 0
while i < t:
ans *= (m + n - i)
tmp *= (t - i)
i += 1
return ans /tmp
sol = Solution()
sol.uniquePaths(3,3)
- reference
- 要看下